Textractor: a hybrid system for medications and reason for their prescription extraction from clinical text documents

نویسندگان

  • Stéphane M. Meystre
  • Julien Thibault
  • Shuying Shen
  • John F. Hurdle
  • Brett R. South
چکیده

UNLABELLED OBJECTIVE To describe a new medication information extraction system-Textractor-developed for the 'i2b2 medication extraction challenge'. The development, functionalities, and official evaluation of the system are detailed. DESIGN Textractor is based on the Apache Unstructured Information Management Architecture (UMIA) framework, and uses methods that are a hybrid between machine learning and pattern matching. Two modules in the system are based on machine learning algorithms, while other modules use regular expressions, rules, and dictionaries, and one module embeds MetaMap Transfer. MEASUREMENTS The official evaluation was based on a reference standard of 251 discharge summaries annotated by all teams participating in the challenge. The metrics used were recall, precision, and the F(1)-measure. They were calculated with exact and inexact matches, and were averaged at the level of systems and documents. RESULTS The reference metric for this challenge, the system-level overall F(1)-measure, reached about 77% for exact matches, with a recall of 72% and a precision of 83%. Performance was the best with route information (F(1)-measure about 86%), and was good for dosage and frequency information, with F(1)-measures of about 82-85%. Results were not as good for durations, with F(1)-measures of 36-39%, and for reasons, with F(1)-measures of 24-27%. CONCLUSION The official evaluation of Textractor for the i2b2 medication extraction challenge demonstrated satisfactory performance. This system was among the 10 best performing systems in this challenge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification

In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...

متن کامل

An Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification

In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...

متن کامل

روش جدید متن‌کاوی برای استخراج اطلاعات زمینه کاربر به‌منظور بهبود رتبه‌بندی نتایج موتور جستجو

Today, the importance of text processing and its usages is well known among researchers and students. The amount of textual, documental materials increase day by day. So we need useful ways to save them and retrieve information from these materials. For example, search engines such as Google, Yahoo, Bing and etc. need to read so many web documents and retrieve the most similar ones to the user ...

متن کامل

A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier

With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...

متن کامل

Presenting a method for extracting structured domain-dependent information from Farsi Web pages

Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Medical Informatics Association : JAMIA

دوره 17 5  شماره 

صفحات  -

تاریخ انتشار 2010